
Q1. FORMAT OF PROGRAME:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// conditional operator
#include <iostream>
using namespace std;

int main ()
{
 int a,b,c;

 a=2;
 b=7;
 c = (a>b) ? a : b;

 cout << c << '\n';
}

Q2. CLASS

Classes (I)
Classes are an expanded concept of data structures: like data structures, they can contain data
members, but they can also contain functions as members.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an object
would be the variable.

Classes are defined using either keyword class or keyword struct, with the following syntax:

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
} object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names for
objects of this class. The body of the declaration can contain members, which can either be data or
function declarations, and optionally access specifiers.

Classes have the same format as plain data structures, except that they can also include functions and
have these new things called access specifiers. An access specifier is one of the following three
keywords: private, public or protected. These specifiers modify the access rights for the members
that follow them:

 private members of a class are accessible only from within other members of the same class
(or from their "friends").

 protected members are accessible from other members of the same class (or from their
"friends"), but also from members of their derived classes.

 Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for all its
members. Therefore, any member that is declared before any other access specifier has private access
automatically. For example:

1
2
3
4
5
6

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area (void);
} rect;

Declares a class (i.e., a type) called Rectangle and an object (i.e., a variable) of this class, called rect.
This class contains four members: two data members of type int (member width and member
height) with private access (because private is the default access level) and two member functions
with public access: the functions set_values and area, of which for now we have only included their
declaration, but not their definition.

Notice the difference between the class name and the object name: In the previous example,
Rectangle was the class name (i.e., the type), whereas rect was an object of type Rectangle. It is
the same relationship int and a have in the following declaration:

 int a;

where int is the type name (the class) and a is the variable name (the object).

After the declarations of Rectangle and rect, any of the public members of object rect can be
accessed as if they were normal functions or normal variables, by simply inserting a dot (.) between
object name and member name. This follows the same syntax as accessing the members of plain data
structures. For example:

1
2
rect.set_values (3,4);
myarea = rect.area();

The only members of rect that cannot be accessed from outside the class are width and height,

since they have private access and they can only be referred to from within other members of that same
class.

Here is the complete example of class Rectangle:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// classes example
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

area: 12 Edit & Run

This example reintroduces the scope operator (::, two colons), seen in earlier chapters in relation to
namespaces. Here it is used in the definition of function set_values to define a member of a class
outside the class itself.

Notice that the definition of the member function area has been included directly within the definition
of class Rectangle given its extreme simplicity. Conversely, set_values it is merely declared with its
prototype within the class, but its definition is outside it. In this outside definition, the operator of scope
(::) is used to specify that the function being defined is a member of the class Rectangle and not a
regular non-member function.

The scope operator (::) specifies the class to which the member being declared belongs, granting
exactly the same scope properties as if this function definition was directly included within the class
definition. For example, the function set_values in the previous example has access to the variables
width and height, which are private members of class Rectangle, and thus only accessible from
other members of the class, such as this.

The only difference between defining a member function completely within the class definition or to just
include its declaration in the function and define it later outside the class, is that in the first case the
function is automatically considered an inline member function by the compiler, while in the second it is

a normal (not-inline) class member function. This causes no differences in behavior, but only on possible
compiler optimizations.

Members width and height have private access (remember that if nothing else is specified, all
members of a class defined with keyword class have private access). By declaring them private, access
from outside the class is not allowed. This makes sense, since we have already defined a member
function to set values for those members within the object: the member function set_values.
Therefore, the rest of the program does not need to have direct access to them. Perhaps in a so simple
example as this, it is difficult to see how restricting access to these variables may be useful, but in
greater projects it may be very important that values cannot be modified in an unexpected way
(unexpected from the point of view of the object).

The most important property of a class is that it is a type, and as such, we can declare multiple objects of
it. For example, following with the previous example of class Rectangle, we could have declared the
object rectb in addition to object rect:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// example: one class, two objects
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area () {return width*height;}
};

void Rectangle::set_values (int x, int y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect, rectb;
 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

Edit & Run

In this particular case, the class (type of the objects) is Rectangle, of which there are two instances
(i.e., objects): rect and rectb. Each one of them has its own member variables and member functions.

Notice that the call to rect.area() does not give the same result as the call to rectb.area(). This is
because each object of class Rectangle has its own variables width and height, as they -in some
way- have also their own function members set_value and area that operate on the object's own

member variables.

Classes allow programming using object-oriented paradigms: Data and functions are both members of
the object, reducing the need to pass and carry handlers or other state variables as arguments to
functions, because they are part of the object whose member is called. Notice that no arguments were
passed on the calls to rect.area or rectb.area. Those member functions directly used the data
members of their respective objects rect and rectb.

Constructors

What would happen in the previous example if we called the member function area before having
called set_values? An undetermined result, since the members width and height had never been
assigned a value.

In order to avoid that, a class can include a special function called its constructor, which is automatically
called whenever a new object of this class is created, allowing the class to initialize member variables or
allocate storage.

This constructor function is declared just like a regular member function, but with a name that matches
the class name and without any return type; not even void.

The Rectangle class above can easily be improved by implementing a constructor:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

// example: class constructor
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 Rectangle (int,int);
 int area () {return (width*height);}
};

Rectangle::Rectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 Rectangle rect (3,4);
 Rectangle rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

Edit & Run

The results of this example are identical to those of the previous example. But now, class Rectangle
has no member function set_values, and has instead a constructor that performs a similar action: it
initializes the values of width and height with the arguments passed to it.

Notice how these arguments are passed to the constructor at the moment at which the objects of this
class are created:

1
2
Rectangle rect (3,4);
Rectangle rectb (5,6);

Constructors cannot be called explicitly as if they were regular member functions. They are only
executed once, when a new object of that class is created.

Notice how neither the constructor prototype declaration (within the class) nor the latter constructor
definition, have return values; not even void: Constructors never return values, they simply initialize
the object.

Overloading constructors

Like any other function, a constructor can also be overloaded with different versions taking different
parameters: with a different number of parameters and/or parameters of different types. The compiler
will automatically call the one whose parameters match the arguments:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// overloading class constructors
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 Rectangle ();
 Rectangle (int,int);
 int area (void) {return (width*height);}
};

Rectangle::Rectangle () {
 width = 5;
 height = 5;
}

Rectangle::Rectangle (int a, int b) {
 width = a;

rect area: 12
rectb area: 25

Edit & Run

20
21
22
23
24
25
26
27
28
29

 height = b;
}

int main () {
 Rectangle rect (3,4);
 Rectangle rectb;
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

In the above example, two objects of class Rectangle are constructed: rect and rectb. rect is
constructed with two arguments, like in the example before.

But this example also introduces a special kind constructor: the default constructor. The default
constructor is the constructor that takes no parameters, and it is special because it is called when an
object is declared but is not initialized with any arguments. In the example above, the default
constructor is called for rectb. Note how rectb is not even constructed with an empty set of
parentheses - in fact, empty parentheses cannot be used to call the default constructor:

1
2
Rectangle rectb; // ok, default constructor called
Rectangle rectc(); // oops, default constructor NOT called

This is because the empty set of parentheses would make of rectc a function declaration instead of an
object declaration: It would be a function that takes no arguments and returns a value of type
Rectangle.

Uniform initialization

The way of calling constructors by enclosing their arguments in parentheses, as shown above, is known
as functional form. But constructors can also be called with other syntaxes:

First, constructors with a single parameter can be called using the variable initialization syntax (an equal
sign followed by the argument):

class_name object_name = initialization_value;

More recently, C++ introduced the possibility of constructors to be called using uniform initialization,
which essentially is the same as the functional form, but using braces ({}) instead of parentheses (()):

class_name object_name { value, value, value, ... }

Optionally, this last syntax can include an equal sign before the braces.

Here is an example with four ways to construct objects of a class whose constructor takes a single
parameter:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// classes and uniform initialization
#include <iostream>
using namespace std;

class Circle {
 double radius;
 public:
 Circle(double r) { radius = r; }
 double circum() {return
2*radius*3.14159265;}
};

int main () {
 Circle foo (10.0); // functional form
 Circle bar = 20.0; // assignment init.
 Circle baz {30.0}; // uniform init.
 Circle qux = {40.0}; // POD-like

 cout << "foo's circumference: " <<
foo.circum() << '\n';
 return 0;
}

foo's circumference:
62.8319

Edit &
Run

An advantage of uniform initialization over functional form is that, unlike parentheses, braces cannot be
confused with function declarations, and thus can be used to explicitly call default constructors:

1
2
3

Rectangle rectb; // default constructor called
Rectangle rectc(); // function declaration (default constructor NOT called)
Rectangle rectd{}; // default constructor called

The choice of syntax to call constructors is largely a matter of style. Most existing code currently uses
functional form, and some newer style guides suggest to choose uniform initialization over the others,
even though it also has its potential pitfalls for its preference of initializer_list as its type.

Member initialization in constructors

When a constructor is used to initialize other members, these other members can be initialized directly,
without resorting to statements in its body. This is done by inserting, before the constructor's body, a

colon (:) and a list of initializations for class members. For example, consider a class with the following
declaration:

1
2
3
4
5
6

class Rectangle {
 int width,height;
 public:
 Rectangle(int,int);
 int area() {return width*height;}
};

The constructor for this class could be defined, as usual, as:

 Rectangle::Rectangle (int x, int y) { width=x; height=y; }

But it could also be defined using member initialization as:

 Rectangle::Rectangle (int x, int y) : width(x) { height=y; }

Or even:

 Rectangle::Rectangle (int x, int y) : width(x), height(y) { }

Note how in this last case, the constructor does nothing else than initialize its members, hence it has an
empty function body.

For members of fundamental types, it makes no difference which of the ways above the constructor is
defined, because they are not initialized by default, but for member objects (those whose type is a
class), if they are not initialized after the colon, they are default-constructed.

Default-constructing all members of a class may or may always not be convenient: in some cases, this is
a waste (when the member is then reinitialized otherwise in the constructor), but in some other cases,
default-construction is not even possible (when the class does not have a default constructor). In these
cases, members shall be initialized in the member initialization list. For example:

1
2
3
4
5
6
7
8

// member initialization
#include <iostream>
using namespace std;

class Circle {
 double radius;
 public:
 Circle(double r) : radius(r) { }

foo's volume:
6283.19

Edit &
Run

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 double area() {return
radius*radius*3.14159265;}
};

class Cylinder {
 Circle base;
 double height;
 public:
 Cylinder(double r, double h) : base (r),
height(h) {}
 double volume() {return base.area() *
height;}
};

int main () {
 Cylinder foo (10,20);

 cout << "foo's volume: " << foo.volume() <<
'\n';
 return 0;
}

In this example, class Cylinder has a member object whose type is another class (base's type is
Circle). Because objects of class Circle can only be constructed with a parameter, Cylinder's
constructor needs to call base's constructor, and the only way to do this is in the member initializer list.

These initializations can also use uniform initializer syntax, using braces {} instead of parentheses ():

 Cylinder::Cylinder (double r, double h) : base{r}, height{h} { }

Pointers to classes

Objects can also be pointed to by pointers: Once declared, a class becomes a valid type, so it can be
used as the type pointed to by a pointer. For example:

 Rectangle * prect;

is a pointer to an object of class Rectangle.

Similarly as with plain data structures, the members of an object can be accessed directly from a pointer
by using the arrow operator (->). Here is an example with some possible combinations:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// pointer to classes example
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
public:
 Rectangle(int x, int y) : width(x), height(y) {}
 int area(void) { return width * height; }
};

int main() {
 Rectangle obj (3, 4);
 Rectangle * foo, * bar, * baz;
 foo = &obj;
 bar = new Rectangle (5, 6);
 baz = new Rectangle[2] { {2,5}, {3,6} };
 cout << "obj's area: " << obj.area() << '\n';
 cout << "*foo's area: " << foo->area() << '\n';
 cout << "*bar's area: " << bar->area() << '\n';
 cout << "baz[0]'s area:" << baz[0].area() << '\n';
 cout << "baz[1]'s area:" << baz[1].area() << '\n';
 delete bar;
 delete[] baz;
 return 0;
}

Edit & Run

This example makes use of several operators to operate on objects and pointers (operators *, &, ., ->,
[]). They can be interpreted as:

expression can be read as

*x pointed to by x

&x address of x

x.y member y of object x

x->y member y of object pointed to by x

(*x).y member y of object pointed to by x (equivalent to the previous one)

x[0] first object pointed to by x

x[1] second object pointed to by x

x[n] (n+1)th object pointed to by x

Most of these expressions have been introduced in earlier chapters. Most notably, the chapter about
arrays introduced the offset operator ([]) and the chapter about plain data structures introduced the
arrow operator (->).

Classes defined with struct and union

Classes can be defined not only with keyword class, but also with keywords struct and union.

The keyword struct, generally used to declared plain data structures, can also be used to declare
classes that have member functions, with the same syntax as with keyword class. The only difference
between both is that members of classes declared with the keyword struct have public access by
default, while members of classes declared with the keyword class have private access by default.
For all other purposes both keywords are equivalent in this context.

Conversely, the concept of unions is different from that of classes declared with struct and class,
since unions only store one data member at a time, but nevertheless they are also classes and can thus
also hold member functions. The default access in union classes is public.

Q2B CLASS 2

Classes (II)

Overloading operators

Classes, essentially, define new types to be used in C++ code. And types in C++ not only interact with
code by means of constructions and assignments. They also interact by means of operators. For
example, take the following operation on fundamental types:

1
2
int a, b, c;
a = b + c;

Here, different variables of a fundamental type (int) are applied the addition operator, and then the
assignment operator. For a fundamental arithmetic type, the meaning of such operations is generally
obvious and unambiguous, but it may not be so for certain class types. For example:

1
2
3
4
5

struct myclass {
 string product;
 float price;
} a, b, c;
a = b + c;

Here, it is not obvious what the result of the addition operation on b and c does. In fact, this code alone
would cause a compilation error, since the type myclass has no defined behavior for additions.
However, C++ allows most operators to be overloaded so that their behavior can be defined for just
about any type, including classes. Here is a list of all the operators that can be overloaded:

Overloadable operators

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , ->* -> new
delete new[] delete[]

Operators are overloaded by means of operator functions, which are regular functions with special
names: their name begins by the operator keyword followed by the operator sign that is overloaded.
The syntax is:

type operator sign (parameters) { /*... body ...*/ }
For example, cartesian vectors are sets of two coordinates: x and y. The addition operation of two
cartesian vectors is defined as the addition both x coordinates together, and both y coordinates

together. For example, adding the cartesian vectors (3,1) and (1,2) together would result in
(3+1,1+2) = (4,3). This could be implemented in C++ with the following code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// overloading operators example
#include <iostream>
using namespace std;

class CVector {
 public:
 int x,y;
 CVector () {};
 CVector (int a,int b) : x(a), y(b) {}
 CVector operator + (const CVector&);
};

CVector CVector::operator+ (const CVector& param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return temp;
}

int main () {
 CVector foo (3,1);
 CVector bar (1,2);
 CVector result;
 result = foo + bar;
 cout << result.x << ',' << result.y << '\n';
 return 0;
}

4,3 Edit & Run

If confused about so many appearances of CVector, consider that some of them refer to the class name
(i.e., the type) CVector and some others are functions with that name (i.e., constructors, which must
have the same name as the class). For example:

1
2
CVector (int, int) : x(a), y(b) {} // function name CVector (constructor)
CVector operator+ (const CVector&); // function that returns a CVector

The function operator+ of class CVector overloads the addition operator (+) for that type. Once
declared, this function can be called either implicitly using the operator, or explicitly using its functional
name:

1
2
c = a + b;
c = a.operator+ (b);

Both expressions are equivalent.

In an earlier chapter, the copy assignment function was introduced as one of the special member
functions that are implicitly defined, even when not explicitly declared in the class. The behavior of this
function by default is to copy the whole content of the data members of the object passed as argument
(the one at the right side of the sign) to the one at the left side:

1
2
3

CVector d (2,3);
CVector e;
e = d; // copy assignment operator

The copy assignment member is the only operator implicitly defined for all classes. Of course, it can be
redefined to any other functionality, such as, for example, to copy only certain members or perform
additional initialization operations.

The operator overload functions are just regular functions which can have any behavior; there is actually
no requirement that the operation performed by that overload bears a relation to the mathematical or
usual meaning of the operator, although it is strongly recommended. For example, a class that overloads
operator+ to actually subtract or that overloads operator== to fill the object with zeros, is perfectly
valid, although using such a class could be challenging.

The parameter expected for a member function overload for operations such as operator+ is naturally
the operand to the right hand side of the operator. This is common to all binary operators (those with an
operand to its left and one operand to its right). But operators can come in diverse forms. Here you have
a table with a summary of the parameters needed for each of the different operators than can be
overloaded (please, replace @ by the operator in each case):

Expression Operator Member function
Non-member

function

@a + - * & ! ~ ++ -- A::operator@() operator@(A)

a@ ++ -- A::operator@(int) operator@(A,int)

a@b + - * / % ^ & | < > == != <=
>= << >> && || , A::operator@(B) operator@(A,B)

a@b = += -= *= /= %= ^= &= |= <<=
>>= [] A::operator@(B) -

a(b,c...) () A::operator()(B,C...) -

a->b -> A::operator->() -

(TYPE) a TYPE A::operator TYPE() -

Where a is an object of class A, b is an object of class B and c is an object of class C. TYPE is just any type
(that operators overloads the conversion to type TYPE).

Notice that some operators may be overloaded in two forms: either as a member function or as a non-
member function: The first case has been used in the example above for operator+. But some
operators can also be overloaded as non-member functions; In this case, the operator function takes an
object of the proper class as first argument.

For example:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// non-member operator overloads
#include <iostream>
using namespace std;

class CVector {
 public:
 int x,y;
 CVector () {}
 CVector (int a, int b) : x(a), y(b) {}
};

CVector operator+ (const CVector& lhs, const CVector& rhs) {
 CVector temp;
 temp.x = lhs.x + rhs.x;
 temp.y = lhs.y + rhs.y;
 return temp;
}

int main () {
 CVector foo (3,1);
 CVector bar (1,2);
 CVector result;
 result = foo + bar;
 cout << result.x << ',' << result.y << '\n';
 return 0;
}

4,3 Edit & Run

The keyword this

The keyword this represents a pointer to the object whose member function is being executed. It is
used within a class's member function to refer to the object itself.

One of its uses can be to check if a parameter passed to a member function is the object itself. For
example:

1 // example on this yes, &a is b

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <iostream>
using namespace std;

class Dummy {
 public:
 bool isitme (Dummy& param);
};

bool Dummy::isitme (Dummy& param)
{
 if (¶m == this) return true;
 else return false;
}

int main () {
 Dummy a;
 Dummy* b = &a;
 if (b->isitme(a))
 cout << "yes, &a is b\n";
 return 0;
}

It is also frequently used in operator= member functions that return objects by reference. Following
with the examples on cartesian vector seen before, its operator= function could have been defined as:

1
2
3
4
5
6

CVector& CVector::operator= (const CVector& param)
{
 x=param.x;
 y=param.y;
 return *this;
}

In fact, this function is very similar to the code that the compiler generates implicitly for this class for
operator=.

Static members

A class can contain static members, either data or functions.

A static data member of a class is also known as a "class variable", because there is only one common
variable for all the objects of that same class, sharing the same value: i.e., its value is not different from
one object of this class to another.

For example, it may be used for a variable within a class that can contain a counter with the number of
objects of that class that are currently allocated, as in the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// static members in classes
#include <iostream>
using namespace std;

class Dummy {
 public:
 static int n;
 Dummy () { n++; };
 ~Dummy () { n--; };
};

int Dummy::n=0;

int main () {
 Dummy a;
 Dummy b[5];
 Dummy * c = new Dummy;
 cout << a.n << '\n';
 delete c;
 cout << Dummy::n << '\n';
 return 0;
}

7
6

In fact, static members have the same properties as non-member variables but they enjoy class scope.
For that reason, and to avoid them to be declared several times, they cannot be initialized directly in the
class, but need to be initialized somewhere outside it. As in the previous example:

 int Dummy::n=0;

Because it is a common variable value for all the objects of the same class, it can be referred to as a
member of any object of that class or even directly by the class name (of course this is only valid for
static members):

1
2
cout << a.n;
cout << Dummy::n;

These two calls above are referring to the same variable: the static variable n within class Dummy shared
by all objects of this class.

Again, it is just like a non-member variable, but with a name that requires to be accessed like a member
of a class (or an object).

Classes can also have static member functions. These represent the same: members of a class that are
common to all object of that class, acting exactly as non-member functions but being accessed like
members of the class. Because they are like non-member functions, they cannot access non-static

members of the class (neither member variables nor member functions). They neither can use the
keyword this.

Const member functions

When an object of a class is qualified as a const object:

 const MyClass myobject;

The access to its data members from outside the class is restricted to read-only, as if all its data
members were const for those accessing them from outside the class. Note though, that the
constructor is still called and is allowed to initialize and modify these data members:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// constructor on const object
#include <iostream>
using namespace std;

class MyClass {
 public:
 int x;
 MyClass(int val) : x(val) {}
 int get() {return x;}
};

int main() {
 const MyClass foo(10);
// foo.x = 20; // not valid: x cannot be modified
 cout << foo.x << '\n'; // ok: data member x can be read
 return 0;
}

The member functions of a const object can only be called if they are themselves specified as const
members; in the example above, member get (which is not specified as const) cannot be called from
foo. To specify that a member is a const member, the const keyword shall follow the function
prototype, after the closing parenthesis for its parameters:

 int get() const {return x;}

Note that const can be used to qualify the type returned by a member function. This const is not the
same as the one which specifies a member as const. Both are independent and are located at different
places in the function prototype:

1
2
3

int get() const {return x;} // const member function
const int& get() {return x;} // member function returning a const&
const int& get() const {return x;} // const member function returning a
const&

Member functions specified to be const cannot modify non-static data members nor call other non-
const member functions. In essence, const members shall not modify the state of an object.

const objects are limited to access only members marked as const, but non-const objects are not
restricted can access both const members and non-const members alike.

You may think that anyway you are seldom going to declare const objects, and thus marking all
members that don't modify the object as const is not worth the effort, but const objects are actually
very common. Most functions taking classes as parameters actually take them by const reference, and
thus, these functions can only access their const members:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// const objects
#include <iostream>
using namespace std;

class MyClass {
 int x;
 public:
 MyClass(int val) : x(val) {}
 const int& get() const {return x;}
};

void print (const MyClass& arg) {
 cout << arg.get() << '\n';
}

int main() {
 MyClass foo (10);
 print(foo);

 return 0;
}

10 Edit & Run

If in this example, get was not specified as a const member, the call to arg.get() in the print
function would not be possible, because const objects only have access to const member functions.

Member functions can be overloaded on their constness: i.e., a class may have two member functions
with identical signatures except that one is const and the other is not: in this case, the const version is
called only when the object is itself const, and the non-const version is called when the object is itself
non-const.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// overloading members on constness
#include <iostream>
using namespace std;

class MyClass {
 int x;
 public:
 MyClass(int val) : x(val) {}
 const int& get() const {return x;}
 int& get() {return x;}
};

int main() {
 MyClass foo (10);
 const MyClass bar (20);
 foo.get() = 15; // ok: get() returns int&
// bar.get() = 25; // not valid: get() returns const int&
 cout << foo.get() << '\n';
 cout << bar.get() << '\n';

 return 0;
}

15
20

Class templates

Just like we can create function templates, we can also create class templates, allowing classes to have
members that use template parameters as types. For example:

The class that we have just defined serves to store two elements of any valid type. For example, if we
wanted to declare an object of this class to store two integer values of type int with the values 115 and
36 we would write:

 mypair<int> myobject (115, 36);

This same class could also be used to create an object to store any other type, such as:

 mypair<double> myfloats (3.0, 2.18);

The constructor is the only member function in the previous class template and it has been defined
inline within the class definition itself. In case that a member function is defined outside the defintion of
the class template, it shall be preceded with the template <...> prefix:

26

100

Notice the syntax of the definition of member function getmax:

1
2
template <class T>
T mypair<T>::getmax ()

Confused by so many T's? There are three T's in this declaration: The first one is the template
parameter. The second T refers to the type returned by the function. And the third T (the one between
angle brackets) is also a requirement: It specifies that this function's template parameter is also the class
template parameter.

Template specialization

It is possible to define a different implementation for a template when a specific type is passed as
template argument. This is called a template specialization.

For example, let's suppose that we have a very simple class called mycontainer that can store one
element of any type and that has just one member function called increase, which increases its value.
But we find that when it stores an element of type char it would be more convenient to have a
completely different implementation with a function member uppercase, so we decide to declare a
class template specialization for that type:

1
33
34

//
8
J

This is the syntax used for the class template specialization:

 template <> class mycontainer <char> { ... };

First of all, notice that we precede the class name with template<> , including an empty parameter list.
This is because all types are known and no template arguments are required for this specialization, but
still, it is the specialization of a class template, and thus it requires to be noted as such.

But more important than this prefix, is the <char> specialization parameter after the class template

name. This specialization parameter itself identifies the type for which the template class is being
specialized (char). Notice the differences between the generic class template and the specialization:

1
2
template <class T> class mycontainer { ... };
template <> class mycontainer <char> { ... };

The first line is the generic template, and the second one is the specialization.

When we declare specializations for a template class, we must also define all its members, even those
identical to the generic template class, because there is no "inheritance" of members from the generic
template to the specialization.

Q3 MERITS & DEMERITS OF C

Inline function Advantages, Disadvantages, Performance and User
Guidelines ?
Inline function is the optimization technique used by the compilers. One can simply prepend inline
keyword to function prototype to make a function inline. Inline function instruct compiler to insert
complete body of the function wherever that function got used in code.

Advantages :- 1) It does not require function calling overhead.
2) It also save overhead of variables push/pop on the stack, while function calling.
3) It also save overhead of return call from a function.
4) It increases locality of reference by utilizing instruction cache.
5) After in-lining compiler can also apply intraprocedural optmization if specified. This is the most
important one, in this way compiler can now focus on dead code elimination, can give more stress on
branch prediction, induction variable elimination etc..

Disadvantages :-
1) May increase function size so that it may not fit on the cache, causing lots of cahce miss.
2) After in-lining function if variables number which are going to use register increases than they may
create overhead on register variable resource utilization.
3) It may cause compilation overhead as if some body changes code inside inline function than all calling
location will also be compiled.
4) If used in header file, it will make your header file size large and may also make it unreadable.
5) If somebody used too many inline function resultant in a larger code size than it may cause thrashing
in memory. More and more number of page fault bringing down your program performance.
6) Its not useful for embeded system where large binary size is not preferred at all due to memory size
constraints.

 Q4

advantage and disadvanges of c++

Advantages:
C++ is relatively-low level and is a systems programming language.
It has a large community.
It has a relatively clear and mature standard.

Disadvantages:
Unorthodox syntax is used in adoption of facilities like lamdas and templates (although still very
usable).
It can be generally heavy if not careful.
C++ allows classes and thus functions with the same name (and overloaded functions) thus a
symbol mangling system must be used. Can easily be wrapped in C functions though.

Q6

COMPARISON C / C++

When should we use C over C++ ?

C doesn't have as much overhead as C++, such as virtual tables, inheritance, and operator
overloading. Since C cuts all of the latter out, there's less to go wrong and bumps up the
efficiency which makes is some-what faster.

C++ is just as fast as C if you use the same features, so if you need the speed of C you have it
without needing to use a C compiler.

C++ is no where near as portable as C code.

Advanced C++ features are at various levels of implementation in different compilers. This
renders these advanced features non-portable.

One should remember C++ was written to solve specific problems with C. By throwing out C++
because some esoteric feature turns out not to be implemented in some vendor's implementation
is no reason not to use the language.

Use C if you wish to write a program that is:
1. platform portable
2. programmer portable

1. C compilers exist for enormous number of platforms, while C++ compilers exist only for a
limited number of some popular (mostly PC) platforms. For many exotic platforms (e.g.
embedded or mainframes), if you are lucky, the only thing you get is some prehistoric build of
GCC, that is far from standard compliant. So, probably you might be able to program C with
classes, but not with STL and Boost. If you don't believe me, check Mozilla portable C++
programming guide - you will be shocked, which C++ constructs you are *not* allowed to use.
Similar things at Google or IBM.

2. It is easy to find a C programmer, it is easy to understand C code. It is easy to maintain C
code. You have a C project - just hire C programmers and you are done - they can immediately
start hacking. You can learn C in a month or less. On the other hand, high level C++
programmers are incompatible with each other. They know (and use) different subsets of C++,
and C++ is huge enough, that the number of useful subsets is enormous. Just ask a C++
programmer, whether constructors may throw exceptions or not, or whether you should use
sharedptrs or not and you get a 40 post-long debate. They also tend to implement things in
extremely compicated ways, just to get a virtual 5% performance improvement[1]. I pretty much
understand why Linus Torvalds wanted to keep them away from Linux kernel.

There are boost libraries for C++ which does the same thing and even more, no need for C
headers.

Q7B

One main difference between c and c++?
Best Answer

The main difference:
c is not object orientd where as c++ is object oriented.

10 major differences are:
1. C follows the procedural programming paradigm while C++ is a multi-paradigm language(procedural
as well as object oriented)

In case of C, importance is given to the steps or procedure of the program while C++ focuses on the data
rather than the process.
Also, it is easier to implement/edit the code in case of C++ for the same reason.

2. In case of C, the data is not secured while the data is secured(hidden) in C++

This difference is due to specific OOP features like Data Hiding which are not present in C.

3. C is a low-level language while C++ is a middle-level language

C is regarded as a low-level language(difficult interpretation & less user friendly) while C++ has features
of both low-level(concentration on whats going on in the machine hardware) & high-level
languages(concentration on the program itself) & hence is regarded as a middle-level language.

4. C uses the top-down approach while C++ uses the bottom-up approach

In case of C, the program is formulated step by step, each step is processed into detail while in C++, the
base elements are first formulated which then are linked together to give rise to larger systems.

5. C is function-driven while C++ is object-driven

Functions are the building blocks of a C program while objects are building blocks of a C++ program.

6. C++ supports function overloading while C does not

Overloading means two functions having the same name in the same program. This can be done only in
C++ with the help of Polymorphism(an OOP feature)

7. We can use functions inside structures in C++ but not in C.

In case of C++, functions can be used inside a structure while structures cannot contain functions in C.

8. The NAMESPACE feature in C++ is absent in case of C

C++ uses NAMESPACE which avoid name collisions. For instance, two students enrolled in the same
university cannot have the same roll number while two students in different universities might have the
same roll number. The universities are two different namespace & hence contain the same roll
number(identifier) but the same university(one namespace) cannot have two students with the same
roll number(identifier)

9. The standard input & output functions differ in the two languages

C uses scanf & printf while C++ uses cin>> & cout<< as their respective input & output functions

10. C++ allows the use of reference variables while C does not

Reference variables allow two variable names to point to the same memory location. We cannot use
these variables in C programming.

C++, as the name suggests is a superset of C. As a matter of fact, C++ can run most of C code
while C cannot run C++ code. Here are the 10 major differences between C++ & C...

Q7 23

History of C Language

The C programming language was designed by Dennies Ritchie in the early 1970s at Bell
Laboratories. It was first used system implementation language for the nascent Unix operating
system. The main reason to devised C was to overcome the limitations of B. It was Derived
from the type-less language BCPL ((Basic Combined Programming Language). C was was
the evolution of B and BCPL by incorporating type checking. It was originally intended for use
in writing compilers for other languages.

History of C++

C++ was devised by Bjarne Stroustrup in 1983 at Bell Laboratories. It is an extension of C by
adding some enhancements to C language. Bjarne combined the simula's(a language designed for
making simulations, created by Ole-Johan Dahl and Kristen Nygaard) features of object oriented
and the efficiency of C. The new features added to language are templates, namespaces,
exception handling and use of standary library.

Difference between c and c++

C++ is an extension of C language. This means that you can not only use the new features
introduced with C++ but can also use the power and efficiency of C language. C and C++ are no
more language for writing compilers and other languages, these general purpose languages are
used worldwide in every field.
Here is a list of differences between c and c++.

The main difference between C and C++ is that C++ is object oriented while C is function or
procedure oriented. Object oriented programming paradigm is focused on writing programs that
are more readable and maintainable. It also helps the reuse of code by packaging a group of
similar objects or using the concept of component programming model. It helps thinking in a
logical way by using the concept of real world concepts of objects, inheritance and
polymorphism. It should be noted that there are also some drawbacks of such features. For
example using polymorphism in a program can slow down the performance of that program.

On the other hand, functional and procedural programming focus primarily on the actions and
events, and the programming model focuses on the logical assertions that trigger execution of
program code.

Q7 12

C vs. C++

This is an objective comparison of the applications, usage and language characteristics of C and
C++. The origins and development trajectory of the two programming languages are also
discussed.

Comparison chart

C

User Rating (271):

 3.99/5
 1
 2
 3
 4
 5

C++

User Rating (256):

 4.07/5
 1
 2
 3
 4
 5

Typing Discipline Static, Weak static, strong, unsafe, nominative

Paradigms
Imperative (procedural) systems
implementation language

Multi-paradigm, object-oriented programming,
generic programming, procedural programming,
functional programming, metaprogramming

Designed by Dennis Ritchie Bjarne Stroustrup

Influenced
awk, csh, C++, C#, Objective-C,
BitC, D, Concurrent C, Java,
JavaScript, Limbo, Perl, PHP

Ada 95, C#, Java, PHP, D, Aikido

Influenced by B (BCPL,CPL), ALGOL 68, Assembly C, Simula, Ada 83, ALGOL 68, CLU, ML

Major
Implementations

GCC, MSVC, Borland C, Watcom C
GNU Compiler Collection, Microsoft Visual C++,
Borland C++ Builder, Intel C++ Compiler,
LLVM/Clang

Appeared in 1972 1985

Garbage Collection
Manual; allows better
management of memory.

No

C

User Rating (271):

 3.99/5
 1
 2
 3
 4
 5

C++

User Rating (256):

 4.07/5
 1
 2
 3
 4
 5

Speed
C applications are faster to
compile and execute than C++
applications

+-5% when compare with C if you know how to
make a good use of C++.The performance of C++
and C are equal, since compilers are mature.

Usual filename
extensions

.c .cc, .cpp, .cxx, .h, .hh, .hpp

Programming-
include

use #include<stdio.h> include

Usage of C vs. C++

C proved very useful in running applications coded in assembly language because of its strengths
like a simple compiler, lower access levels of memory, lower run time support and an efficient
constructing language that was in sync with the hardware instructions. Another of its credits is
that it is a highly portable (compatible with a variety of OS & Platforms) with very minimal
source code changes required. Thus it has enabled remote operations & independence from the
hardware. C is also compliant to a variety of standards, making it work with everything.

C++ is known as a mid-level language. Due to the fact that the C++ comprises of both high-level
and low-level language features. Some of the adjectives used to describe C++ are static typed,
free-form, multi-paradigm and supporting procedural programming.

Stroustrup, while programming for his Ph.D thesis, found that the Simula language had high
level features helpful for large software development, but was too slow for practical use, while
the BCPL (language) was fast, but too low-level and thus unsuitable for large software
development. In Bell labs, he had to analyze the UNIX kernel with respect to distributed
computing which created further problems and he set out to enhance C (due to its ultra portable
nature) with features from the Simula. C++ was created in 1983 with additional features like
virtual functions, function name and operator overloading, references, constants, user-controlled
free-store memory, improved type checking and single-line comments with two forward slashes
(//). The Cfront (commercial version) was released in 1985 with the class, derived class, strong
type checking, inlining, and default argument features. 1985 also saw the release of the The C++
Programming Language, an important reference to the language in the absence of an official

standard. This was followed by the release of the C++ 2.0 in 1989 with features like multiple
inheritance, abstract classes, static member functions, const member functions and protected
members. Features like templates, exceptions, namespaces, new casts and Boolean type were
added post 1990.

Along with the language, its library also evolved, with several additions like the stream I/O
library, the Standard Template Library etc.

The first editions of the book K & R written by Dennis Ritchie & Brian Kernighan (original
name: The C Programming Language) describes their version of C as the K & R C with full
specifications, while the later editions include the ANSI (American National Standards Institute)
C standards. Some of the salient features described are the introduction of various data types,
removal of several semantic ambiguities, omission of other function declarations etc. Even after
the introduction of the ANSI C, the K & R C continued to be the most portable programming
language for programmers due to its wider compatibilities.

K&R function declarations did not include any information about function arguments leading to
non-performance of function parameter type checks, although some compilers issued a warning
message if a local function was called with the wrong number of arguments or if multiple calls to
an external function used different numbers of arguments. Tools such as UNIX's lint utility were
created for checking the consistency of functions used across multiple source files.

Language Characteristics

Characteristics of C

Some of the important characteristics of C are as follows:

1. Structured programming facilities
2. Confirming to the ALGOL traditions
3. Short circuit evaluation – usage of only one operand if the result can be determined with it

alone
4. Static typing system for avoiding unintended operations
5. Value passed parameters with relevance to pointer value passing
6. Heterogeneous data combination & manipulation
7. Reserved keywords and free-format source text
8. Larger number of compound operators, such as +=, ++
9. Huge variable hiding capacity, though function definitions being non-nestable
10. Character – integer usage similar to assembly language
11. Low-level access to computer memory via machine addresses and typed pointers
12. Function pointers allow rudimentary forms of closures & polymorphic runtime
13. Pointer arithmetic defined Array indexing (secondary notion)
14. Standardized processor for defining macros, including source code files & conditional

compilations
15. Complex Input/Output and mathematical functions with consistent delegation to library

routines
16. Syntax same as “B” (C’s predecessor) but different from ALGOL e.g.: { ... } replaced begin ... end,

&& and || replaced and & or, which
17. While B used & and | in both meanings, C made them syntactically distinct from the bit-wise

operators
18. Similarities to Fortran e.g: the equal- sign for assignment (copying) & two consecutive equal-

signs to test for equality (compare to EQ) or the equal-sign in BASIC)

Other unofficial features added with time were:

1. void functions
2. Functions returning struct or union types instead of pointers
3. Assignments enabled for struct data types
4. const qualifier to make an object read-only
5. Enumerated types
6. Creationg of tool to avoid the inherent problems of the language

Soon C became powerful enough to have the UNIX Kernel (written in a assembly language) re-
written making it one of the first OS Kernels written in a language apart from the assembly
languages.

Characteristics of C++

1. C++ is designed to be a statically typed, general-purpose language that is as efficient and
portable as C

2. C++ is designed to directly and comprehensively support multiple programming styles
(procedural programming, data abstraction, object-oriented programming, and generic
programming)

3. C++ is designed to give the programmer choice, even if this makes it possible for the
programmer to choose incorrectly

4. C++ is designed to be as compatible with C as possible, therefore providing a smooth transition
from C

5. C++ avoids features that are platform specific or not general purpose
6. C++ does not incur overhead for features that are not used
7. C++ is designed to function without a sophisticated programming environment

Polymorphism, one of the prominent qualities of C++, enablesmany implementations with a
single interphase and for objects to act according to circumstances. C++ supports both static
(compile-time) and dynamic (run-time) polymorphisms. Compile-time polymorphism does not
allow for certain run-time decisions, while run-time polymorphism typically incurs a
performance penalty. C++, though considered a superset of C, there exist a few differences
causing some valid C codes to be invalid in C++ or to behave differently in C++. Issues like the
C++ defining new keywords namely new & class, that are used as identifiers in C. C and C++
codes can be intermixed by declaring any C code that is to be called from/used in C++ with C
linkage & by placing it within an extern "C" { /* C code */ } block.

Q7 W

15 Most Important Differences Between C And C++

 Basic Introduction:

 C++ is derived from C Language. It is a Superset of C.
 Earlier C++ was known as C with classes.
 In C++, the major change was the addition of classes and a mechanism for inheriting class

objects into other classes.
 Most C Programs can be compiled in C++ compiler.
 C++ expressions are the same as C expressions.
 All C operators are valid in C++.

Following are the differences Between C and C++ :

 C C++

1. C is Procedural Language.
1. C++ is non Procedural i.e Object oriented
Language.

2. No virtual Functions are present in C
2. The concept of virtual Functions are used in
C++.

3. In C, Polymorphism is not possible.
3. The concept of polymorphism is used in
C++.
Polymorphism is the most Important Feature

of OOPS.

4. Operator overloading is not possible in C.
4. Operator overloading is one of the greatest
Feature of C++.

5. Top down approach is used in Program Design.
5. Bottom up approach adopted in Program
Design.

6. No namespace Feature is present in C Language.
6. Namespace Feature is present in C++ for
avoiding Name collision.

7. Multiple Declaration of global variables are allowed.
7. Multiple Declaration of global varioables
are not allowed.

8. In C

 scanf() Function used for Input.
 printf() Function used for output.

8. In C++

 Cin>> Function used for Input.
 Cout<< Function used for output.

9. Mapping between Data and Function is difficult and
complicated.

9. Mapping between Data and Function can
be used using "Objects"

10. In C, we can call main() Function through other
Functions

10. In C++, we cannot call main() Function
through other functions.

11. C requires all the variables to be defined at the
starting of a scope.

11. C++ allows the declaration of variable
anywhere in the scope i.e at time of its First
use.

12. No inheritance is possible in C. 12. Inheritance is possible in C++

13. In C, malloc() and calloc() Functions are used for
Memory Allocation and free() function for memory
Deallocating.

13.In C++, new and delete operators are used
for Memory Allocating and Deallocating.

14. It supports built-in and primitive data types.
14. It support both built-in and user define
data types.

15. In C, Exception Handling is not present.
15. In C++, Exception Handling is done with
Try and Catch block.

mehul koli27 April 2014 03:04

can any body tell me in which software c & c++ run or used or explaine....? plz tell me on
this wall or mexxx1291@gmail.com

Pramodh Kumar31 May 2014 23:51

nice one and all the software professionals who are searching for s/w jobs now a days
have to know must and differences between the c and c++ and java and .net languages

mailto:mexxx1291@gmail.com

Q8

10 Major Differences Between C And C++
97950 Views August 14, 2009 343 Comments C++, Computing Rishabh Dev

C++, as the name suggests, is a superset of C. As a matter of fact, C++ can run most of C code
while C cannot run C++ code. Here are the 10 major differences between C++ & C…

1. C follows the procedural programming paradigm while C++ is a multi-paradigm
language(procedural as well as object oriented)

In case of C, importance is given to the steps or procedure of the program while C++ focuses on
the data rather than the process.
Also, it is easier to implement/edit the code in case of C++ for the same reason.

2. In case of C, the data is not secured while the data is secured(hidden) in C++

This difference is due to specific OOP features like Data Hiding which are not present in C.

3. C is a low-level language while C++ is a middle-level language (Relatively, Please see the
discussion at the end of the post)

C is regarded as a low-level language(difficult interpretation & less user friendly) while C++ has
features of both low-level(concentration on whats going on in the machine hardware) & high-
level languages(concentration on the program itself) & hence is regarded as a middle-level
language.

Note: This is a relative difference. See updates at end of this post.

4. C uses the top-down approach while C++ uses the bottom-up approach

In case of C, the program is formulated step by step, each step is processed into detail while in
C++, the base elements are first formulated which then are linked together to give rise to larger
systems.

5. C is function-driven while C++ is object-driven

Functions are the building blocks of a C program while objects are building blocks of a C++
program.

6. C++ supports function overloading while C does not

Overloading means two functions having the same name in the same program. This can be done
only in C++ with the help of Polymorphism(an OOP feature)

7. We can use functions inside structures in C++ but not in C.

In case of C++, functions can be used inside a structure while structures cannot contain functions
in C.

8. The NAMESPACE feature in C++ is absent in case of C

C++ uses NAMESPACE which avoid name collisions. For instance, two students enrolled in the
same university cannot have the same roll number while two students in different universities
might have the same roll number. The universities are two different namespace & hence contain
the same roll number(identifier) but the same university(one namespace) cannot have two
students with the same roll number(identifier)

9. The standard input & output functions differ in the two languages

C uses scanf & printf while C++ uses cin>> & cout<< as their respective input & output
functions

10. C++ allows the use of reference variables while C does not

Reference variables allow two variable names to point to the same memory location. We cannot
use these variables in C programming.

About author

Rishabh Dev

Rishabh Dev is the Founder, Author & Editor at Durofy.com. Start a conversation with Rishabh
at dev@durofy.com to know more.

mailto:dev@durofy.com

August 11, 2009

The Basics Of Object Oriented Programming
C

Q 8 w

Advantages and Disadvantages of Object-Oriented
Approach
Oracle Tips by Burleson Consulting

Benefits of Object-Oriented Approach

Object-oriented databases make the promise of reduced maintenance, code reusability, real world
modeling, and improved reliability and flexibility. However, these are just promises and in the real
world some users find that the object-oriented benefits are not as compelling as they originally
believed. For example, what is code reusability? Some will say that they can reuse much of the object-
oriented code that is created for a system, but many say there is no more code reusability in object-
oriented systems than in traditional systems. Code reusability is a subjective thing, and depends heavily
on how the system is defined. The object-oriented approach does give the ability to reduce some of the
major expenses associated with systems, such as maintenance and development of programming code.
Here are some of the benefits of the object-oriented approach:

Reduced Maintenance: The primary goal of object-oriented development is the assurance that the
system will enjoy a longer life while having far smaller maintenance costs. Because most of the
processes within the system are encapsulated, the behaviors may be reused and incorporated into new
behaviors.

Real-World Modeling: Object-oriented system tend to model the real world in a more complete
fashion than do traditional methods. Objects are organized into classes of objects, and objects are
associated with behaviors. The model is based on objects, rather than on data and processing.

Improved Reliability and Flexibility: Object-oriented system promise to be far more reliable than
traditional systems, primarily because new behaviors can be "built" from existing objects. Because
objects can be dynamically called and accessed, new objects may be created at any time. The new
objects may inherit data attributes from one, or many other objects. Behaviors may be inherited from
super-classes, and novel behaviors may be added without effecting existing systems functions.

High Code Reusability: When a new object is created, it will automatically inherit the data attributes
and characteristics of the class from which it was spawned. The new object will also inherit the data
and behaviors from all superclasses in which it participates. When a user creates a new type of a
widget, the new object behaves "wigitty", while having new behaviors which are defined to the system.

The downside of the Object Technology

There are several major misconceptions which must be addressed when considering the use of an
object-oriented method:

Object-oriented Development is not a panacea - Object-oriented Development is best suited for
dynamic, interactive environments, as evidenced by its widespread acceptance in CAD/CAM and
engineering design systems. Wide-scale object-oriented corporate systems are still unproved, and
many bread-and-butter information systems applications (i.e. payroll, accounting), may not benefit
from the object-oriented approach.

Object-oriented Development is not a technology - Although many advocates are religious in their
fervor for object-oriented systems, remember that all the "HOOPLA" is directed at the object-oriented
approach to problem solving, and not to any specific technology.

Object-oriented Development is not yet completely accepted by major vendors - Object-oriented
Development has gained some market respectability, and vendors have gone from catering to a "lunatic
fringe" to a respected market. Still, there are major reservations as to whether Object-oriented
development will become a major force, or fade into history, as in the 1980's when Decision Support
Systems made great promises, only to fade into obscurity.

Cannot find qualified programmers and DBA?s

When one investigates the general acceptance of object-oriented systems in the commercial
marketplace, you generally find that most managers would like to see an object technology approach,
but they do not have the time to train their staffs in object-oriented methods. Other will say that the
object-oriented method is only for graphical workstation systems, and that there is no pressing need for
object-oriented system within mainstream business systems.

Even though commercial object-oriented programming languages have been on the market for several
years, systems written with object-oriented languages comprise less than 1% of systems today.

Once a major vendor begins conforming to a standard, it can become impossible to retrofit their
standard to conform to another standard. When the American Standards Committee came out with a
standard character set for computers (ASCII), IBM disregarded the standard and proceeded with their
own character set, called the Extended Binary Character Data Interchange Code (EBCDIC). Even thirty
years later, there has still been no resolution between ASCII and EBCDIC, and data transfers between
ASCII and EBCDIC machines continue to present problems. For example, the EBCDIC character set has
no characters for "[" and "]", and ASCII has no character for the "cent" sign.

Summary

When one strips away all of the confusing acronyms and jargon, the object technology approach is
nothing more than a method, an approach to systems design which can be implemented without any
changes to existing software technology.

Here is an actual example from the popular IDMS database:

Q8 g

Advantages and Disadvantages of OOP
by pooryorick ▲

Advantages of OOP
Object-Oriented Programming has the following advantages over conventional approaches:

 OOP provides a clear modular structure for programs which makes it good for defining
abstract datatypes where implementation details are hidden and the unit has a clearly
defined interface.

 OOP makes it easy to maintain and modify existing code as new objects can be created
with small differences to existing ones.

 OOP provides a good framework for code libraries where supplied software components
can be easily adapted and modified by the programmer. This is particularly useful for
developing graphical user interfaces.

Concepts of OOP:

 Objects
 Classes
 Data Abstraction and Encapsulation
 Inheritance
 Polymorphism

Objects
Objects are the basic run-time entities in an object-oriented system. Programming problem is
analyzed in terms of objects and nature of communication between them. When a program is
executed, objects interact with each other by sending messages. Different objects can also
interact with each other without knowing the details of their data or code.
Classes
A class is a collection of objects of similar type. Once a class is defined, any number of objects
can be created which belong to that class.
Data Abstraction and Encapsulation
Abstraction refers to the act of representing essential features without including the background
details or explanations. Classes use the concept of abstraction and are defined as a list of abstract
attributes. Storing data and functions in a single unit (class) is encapsulation. Data cannot be
accessible to the outside world and only those functions which are stored in the class can access
it.
Inheritance
Inheritance is the process by which objects can acquire the properties of objects of other class. In
OOP, inheritance provides reusability, like, adding additional features to an existing class
without modifying it. This is achieved by deriving a new class from the existing one. The new
class will have combined features of both the classes.
Polymorphism

Polymorphism means the ability to take more than one form. An operation may exhibit different
behaviors in different instances. The behavior depends on the data types used in the operation.
Polymorphism is extensively used in implementing Inheritance.

Q8 ss

 Object Oriented Programming:
Advantages of OOP

Object Oriented Programming has great advantages over other
programming styles:

 Code Reuse and Recycling: Objects created for Object
Oriented Programs can easily be reused in other
programs.

 Encapsulation (part 1): Once an Object is created,
knowledge of its implementation is not necessary for its
use. In older programs, coders needed understand the
details of a piece of code before using it (in this or
another program).

 Encapsulation (part 2): Objects have the ability to hide
certain parts of themselves from programmers. This
prevents programmers from tampering with values they
shouldn't. Additionally, the object controls how one
interacts with it, preventing other kinds of errors. For
example, a programmer (or another program) cannot set
the width of a window to -400.

 Design Benefits: Large programs are very difficult to
write. Object Oriented Programs force designers to go
through an extensive planning phase, which makes for
better designs with less flaws. In addition, once a program
reaches a certain size, Object Oriented Programs are
actually easier to program than non-Object Oriented ones.

 Software Maintenance: Programs are not disposable.
Legacy code must be dealt with on a daily basis, either to
be improved upon (for a new version of an exist piece of
software) or made to work with newer computers and
software. An Object Oriented Program is much easier to
modify and maintain than a non-Object Oriented
Program. So although a lot of work is spent before the
program is written, less work is needed to maintain it over
time.

Q 8 dd

Object-Oriented Programming

Computer programs become ever more complex. Hello World in C# involves millions of lines of
code. Developers need to reuse old code. They need ways to add new features without changing
other code.

Intro

Most examples show Car objects and Employee classes. But what are the real benefits of object-
oriented design, and why is it important? OOP has very little to do with Car objects or Employee
classes.

OOP:It is normally called object-oriented programming, but it is also component-oriented
programming.

Tip:Good OOP is bound to design patterns. These patterns are basically the blueprints of quality
object design.

Class, Design Patterns

Syntax

Objects provide syntax clues. To make an object, you use new. Objects provide accessor
methods that manage access to their internals. With native OOP languages, the compiler and
build environments are designed for this.

NewConstructor

Sharing code. In a new project, you have three additional requirements. In old languages, you
would need change the existing code. With C# and OOP, you can simply inherit the old code
into a new class.

Inheritance

Tip:It improves reusability.
You haven't changed any of the old code.
You haven't introduced any new bugs in old code.

Old callers don't need changes. Your old, reliable code doesn't need to be cloned just to add
some functionality to it. The existing callers can still function as is. No changes were made to
them or the libraries they use.

So:It causes less breakage. In older languages, you can add functionality, but this breaks other
parts of your project.

However:With OOP, changing the implementation of one part is safer, because it won't affect
the way the code is called.

Errors

Exceptions improve error handling. These allow us to separate errors from what the main intent
of the program is. When you write code to list objects in an array, checking for null or invalid
numbers may not be its primary purpose.

So:With exception handling, we can separate the error handling from the really important thrust
of the program.

Exception

Development

OOP can both make development faster, and your programs run faster. We are living in a world
in which every person is rushed. As developers we are always learning and trying new things.
OOP provides separation of various objects.

Tip:You can use the proxy design pattern to meter access to expensive parts of your code. Just
call into the proxy to access a resource.

Protection Proxy

It allows single-instance code. In old languages, you can use global variables and initialize them
when you need them. But the singleton design pattern offers a way to simplify the code that does
that.

It has better IDEs. Object orientation can provide many clues to your development
environment. A program like Visual Studio can make smarter guesses about what you intended
to do, and what you may want to do next.

Visual Studio

So:It speeds development and execution. Almost always, these two are dependent on one
another.

And:With a language like C#, we can spend more time on designing a better algorithm, rather
than writing lower-level code.

Interfaces are a concession to the limitations of programmers. We can't remember every detail
of how to use other developers' code. They provide organization and sanity to large projects.
Interfaces help create a blueprint of a module.

Then:Others can help build it to specification. Interfaces don't provide anything beyond syntax
or organization.

Practical

OOP is practical. It is really not a new paradigm or a revolutionary new thing. Everything on
your brand new processor is still running machine code. Above that there is still assembly
language.

Also:Object-orientation provides us with more organization and simpler syntax. Every part of
this design is about practicality.

Special

C# is special because it eliminates the hard stuff. It has a compiler that basically rejects any code
that looks like it could be buggy, whether it is or not. It takes several approaches to prevent
programmers from making mistakes.

And:Code quality is improved. The C# language enforces that every method is in a class, which
results in better organization.

Thus:It is a practical language based on organization and helping programmers write the code
that they intend to write.

Criticism

Linus Torvalds wrote the original code for Linux. He is outspoken about C++ and newer object-
oriented languages. However, the software industry that gets most stuff done is totally committed
to OOP.

The difference between the two viewpoints is that objects are useful for getting programs
written and working well fast. Linus didn't have a deadline to ship his operating system, but
almost every commercial project does.

We are not perfect. We make mistakes. Almost every program has flaws. But we are people
who have to work and support our families and pay rent. Object-orientation is a compromise
between exacting design and practicality.

Therefore:If you are using a C# program that is slow, it is almost positively not the fault of the
C# language.

Note:New languages like Java and C# are extremely fast and often faster than their C
equivalents.

And:When you take a talented developer, he or she is free to focus on more important
algorithmic problems.

Summary

If you want to program embedded systems or OS kernels, you probably won't want to work with
C# or even OOP in general. For the rest of us, 90% of the software community, OOP is a
practical way to write programs.

So:OOP enables those of us who are not computer science geniuses to write programs that are
good and fill the needs of the market.

